首页> 外文OA文献 >A new regime of nanoscale thermal transport: collective diffusion counteracts dissipation inefficiency
【2h】

A new regime of nanoscale thermal transport: collective diffusion counteracts dissipation inefficiency

机译:一种新的纳米级热传输方式:集体扩散   消除了耗散效率低下的问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding thermal transport from nanoscale heat sources is important fora fundamental description of energy flow in materials, as well as for manytechnological applications including thermal management in nanoelectronics,thermoelectric devices, nano-enhanced photovoltaics and nanoparticle-mediatedthermal therapies. Thermal transport at the nanoscale is fundamentallydifferent from that at the macroscale and is determined by the distribution ofcarrier mean free paths in a material, the length scales of the heat sources,and the distance over which heat is transported. Past work has shown thatFourier's law for heat conduction dramatically over-predicts the rate of heatdissipation from heat sources with dimensions smaller than the mean free pathof the dominant heat-carrying phonons. In this work, we uncover a new regime ofnanoscale thermal transport that dominates when the separation betweennanoscale heat sources is small compared with the dominant phonon mean freepaths. Surprisingly, the interplay between neighboring heat sources canfacilitate efficient, diffusive-like heat dissipation, even from the smallestnanoscale heat sources. This finding suggests that thermal management innanoscale systems including integrated circuits might not be as challenging asprojected. Finally, we demonstrate a unique and new capability to extract meanfree path distributions of phonons in materials, allowing the firstexperimental validation of differential conductivity predictions fromfirst-principles calculations.
机译:了解纳米级热源的热传输对材料中能量流的基本描述以及许多技术应用(包括纳米电子学,热电设备,纳米增强型光伏技术和纳米粒子介导的热疗法)具有重要意义。纳米尺度上的热传输与宏观尺度上的热传输有根本区别,它取决于材料中载流子平均自由程的分布,热源的长度尺度以及热传输的距离。过去的工作表明,傅立叶热传导定律大大预测了热源的散热速率,该热源的尺寸小于占主导地位的载热声子的平均自由程。在这项工作中,我们发现了一种新的纳米尺度热传输机制,当与主要的声子平均自由程相比,纳米尺度热源之间的间隔较小时,这种新的控制方式就占主导地位。令人惊讶地,即使来自最小的纳米级热源,相邻热源之间的相互作用也可以促进有效的,类似扩散的散热。这一发现表明,包括集成电路在内的热管理超大规模系统可能不会像预期的那样具有挑战性。最后,我们展示了一种独特的新功能,可以提取材料中声子的平均自由程分布,从而可以从第一性原理计算中对差分电导率预测进行首次实验验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号